Mysteries of exoplanets and low-mass stars and how to shed new X-ray light on them

Prof. Dr. Katja Poppenhäger, Leibniz Institute for Astrophysics Potsdam (AIP), Germany

Stars & exoplanets & high-energy phenomena

- stellar corona, flares, mass ejections
- exoplanetary evaporation, atmosphere chemistry/physics
- star-planet interactions (planet influencing star)

Stars & exoplanets & high-energy phenomena

- stellar corona, flares, mass ejections
- exoplanetary evaporation, atmosphere chemistry/physics
- star-planet interactions (planet influencing star)

Stellar rotation and magnetism

differential rotation causes time-variable magnetic field via dynamo processes

magnetic activity causes ionized wind which carries away angular momentum cool stars spin down over time and their magnetic activity ceases

X-rays from cool stars

Stars create X-rays as thermal emission from their coronae

Coronae exist because of the stellar magnetic dynamo

image credit: NSO/NASA/CAO

X-rays from cool stars

magnetic braking:

angular momentum loss of star through shedding of magnetized wind

causes decrease in all magnetic phenomena

Evaporation of planetary atmospheres

Survival of exoplanet atmospheres

Jeans escape:

Escape from high-velocity tail of Maxwell-Boltzmann distribution

Hydrodynamic escape:

Heating of atmospheric layer by X-ray and extreme-UV photons, wind-like escape

From H/He envelopes to rocky planets

See Fulton et al. (2017), van Eylen et al. (2018);

see also Kubyshkina et al. (2018), Berger et al. (2020), Gupta & Schlichting (2020), Loyd et al. (2020)

From H/He to rocky planets: evaporation

"Fulton gap"; plot adapted from Huber et al. (2022)

Stellar X-ray evolution over time

X-rays from stars drive atmospheric escape

However, stars can follow different X-ray luminosity tracks over time!

→ needs to be modelled statistically.

stellar data from Tu, Güdel et al. 2015

PLATYPOS - PLAneTarY PhOtoevaporation Simulator

Star-Planet System

- planet properties (planetary model, radius, mass or core mass & envelope mass fraction, semi-major axis)
- stellar properties (mass, X-ray saturation luminosity)

Evaporation Model

- mass-loss rate estimation (energy-limited, radiation-recombination-limited, "hydro-based approximation")
- effective absorption radius β
- evaporation efficiency ε

Ketzer & Poppenhaeger 2022

Populations react to stellar activity tracks

Ketzer & Poppenhaeger 2023

Observable signatures of currently on-going exoplanet evaporation

Exoplanet atmospheres: transits & eclipses

Atmospheres and high-energy photons

Extended atmospheres in X-rays

Hot Jupiter HD 189733 b

Poppenhaeger et al. (2013)

Extended atmospheres in UV

Extended atmospheres in He 10380 (IR)

Hot Jupiter HAT-P-32 b: big tidal tails

Zhang, Morley et al. (2023)

Extended atmospheres in He 10380 (IR)

Observing helium in exoplanet atmospheres

Need to excite helium in exoplanet atmosphere first to make it absorb in infrared He lines (stellar high-energy photons make that happen!)

Observing helium in exoplanet atmospheres

Need to excite helium in exoplanet atmosphere first to make it absorb in infrared He lines (stellar high-energy photons make that happen!)

eROSITA X-ray survey: many new X-ray detections of exoplanet host stars

- \rightarrow allows mass-loss estimates for planets
- → identify best candidates to study ongoing evaporation

see Foster, Poppenhaeger et al. (2022)

eROSITA X-ray survey: many new X-ray detections of exoplanet host stars

- \rightarrow allows mass-loss estimates for planets
- → identify best candidates to study ongoing evaporation

see Foster, Poppenhaeger et al. (2022)

Many new exoplanets with high X-ray irradiation levels, suitable for follow-up observations of atmospheres at other wavelengths.

Foster, Poppenhaeger et al. (A&A 2022)

High mass loss rates expected from irradiation levels!

Foster, Poppenhaeger et al. (A&A 2022)

Exoplanet X-ray transits with NewAthena

Cilley, King & Corrales (2024)

Exoplanet X-ray transits with NewAthena

Cilley, King & Corrales (2024)

Star-planet interactions changing stellar X-ray properties

Tidal star-planet interaction

Mathias & Remus (2013), see also Lanza & Mathis (2016)

Tidal star-planet interaction

Testable observationally:

planet-hosting stars in wide binary systems

discrepancies in rotation & activity evolution

Poppenhaeger & Wolk (2014)

Do stars with Hot Jupiters have higher activity than their co-eval stellar companions?

Tidal interaction -> spin up of host star?

Test with X-ray observations of wide stellar binaries.

-> 20 suitable systems observed with XMM and Chandra.

Stars with Hot
Jupiters have higher
X-ray activity than
their same-age
stellar companions
at wide distances

Stars with Hot
Jupiters have higher
X-ray activity than
their same-age
stellar companions
at wide distances

Magnetic star-planet interaction

Planets in eccentric orbits

This should depend on the planet's magnetosphere!

Planets in eccentric orbits

X-ray prospects for star-planet systems in the NewAthena era

- Host stars:
 - characterize stellar X-ray spectra also for old, very low-mass M dwarfs
 - improve age-activity relationship where possible

X-ray prospects for star-planet systems in the NewAthena era

- Host stars:
 - characterize stellar X-ray spectra also for old, very low-mass M dwarfs
 - improve age-activity relationship where possible
- Exoplanets: measure transit depths in X-rays for representative sample of exoplanets, connect to evaporation processes

X-ray prospects for star-planet systems in the NewAthena era

- Host stars:
 - characterize stellar X-ray spectra also for old, very low-mass M dwarfs
 - improve age-activity relationship where possible
- Exoplanets: measure transit depths in X-rays for representative sample of exoplanets, connect to evaporation processes
- Star-Planet Interactions (SPI):
 - quantify tidal SPI for different stellar masses and interior structures
 - identify whether SPI flare triggering is a ubiquitous phenomenon

