Forward Modelling the Energetic Universe

Antonis Georgakakis (National Observatory of Athens)
Iván Muñoz Rodríguez (NOA/Southampton), Brivael Laloux (NOA/Durham),
Angel Ruiz (NOA)

Motivation

What are the physical conditions that promote the growth of supermassive black holes at the centres of galaxies?

- Multi-parametric studies of AGN host galaxies (e.g. star-formation, morphology, star-formation rate)
- Semi-empirical forward modelling approach is well-suited to interpret the observations.
- Demonstration for the role of environment in activating the black-holes of galaxies.

Growth of Black Holes across cosmic time

- Use observations to count AGN as a function of cosmic time (demographics)
- Strong evolution of the AGN population from the local Universe to earlier times
- What is driving this evolution?

Miyaji+01, Ueda+03, Hasinger+05, Akylas+06, Aird+10, Ueda+14, Aird+15, Buchner+15, Miyaji+15, Vito+14, Georgakakis+15, Vito+16

Formation of baryonic matter

- Dark Matter Halos: sites where galaxies form and evolve
- Baryonic processes:
 - gas cooling / heating
 - gas inflows
 - formation of stars
 - feedback processes
- Most massive galaxies host at their nuclear regions supermassive black holes

AGN population studies: probe physics of black hole accretion flows

- Multi-parametric studies of AGN host galaxies, e.g. star-formation, morphology, environment, gas content.
- Identify regions of the parameter space that are conducive to accretion events
- Example: AGN-merger connection.

Alexander & Hickox 2012

Grogin+05; Gabor+09; Georgakakis+09; Cisternas+11; Ellison+11; Koss+11, +12;

Kocevski+12; Schawinski+12; Sabater+15;

Mechtley+16; Goulding+18; Marian+19;

Ellison+19

Koss+11: Swift-BAT AGN

AGN population studies: probe physics of black hole accretion flows

Caveat:

 covariances between parameters of interest + observational selection effects introduce hidden biases and may lead to erroneous interpretations.

Mitigation strategies:

- define "control" samples of non-AGN
- forward modelling

Forward Modelling AGN and galaxies in a cosmological volume

- Produce a realistic (empirical) model of AGN and galaxies in the Universe under certain hypotheses.
- Use the model to replicate real observations by adding all the characteristics of the observational data (e.g. noise, flux limits, field-of-view).
- Compare mock with real observations to test the model hypotheses

Multi-wavelength extragalactic survey fields

Specific accretion rates of AGN samples:

λ∝L_X/M_{star}

Incidence of AGN in galaxies: specific accretion rate distributions

Georgakakis+17, Aird+12, +19, Bongiorno+12, +16

- $P(\lambda,z)$ is the probability of a galaxy hosting an active black hole with specific accretion rate $\lambda \propto L_x/M_{star}$.
- P(λ,z) provides information on how AGN occupy galaxies.

Building empirical models of AGN in cosmological volumes

Empirical model consistent with:

- AGN Luminosity Function
- X-ray AGN host stellar mass function

Specific accretion rate distributions: multiwavelength AGN demographics

Specific accretion rate distributions: AGN flickering

AGN flickering in the Chandra Deep Field South, Paolillo+17

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Specific accretion rate distributions: AGN environment

Environment: Definitions

- Environment = local density of matter
- Environment = Clusters, Groups,
 Filaments, Voids
- Environment of galaxies/AGN = mass of the dark matter halo
 (M_{DMH}) in which the live
- $(M_{\rm DMH})$ in which the live Groups: $M_{\rm DMH} \sim 10^{13} M_{\rm sun}$; clusters: $M_{\rm DMH} > 10^{14} M_{\rm sun}$

- Observations suggest that AGN live in groups
- Mean halo masses 10¹³-10¹⁴ solar.
- Galaxy collisions are expected to be frequent in groups

Fanidakis+13

Hypothesis testing: Do accretion events onto supermassive black-holes depend on environment?

- Costruct AGN mocks assuming that the black-hole accretion is a stochastic process, i.e. independent of environment.
- 2) Infer the large scale distribution (clustering) of AGN in mocks.
- Compare with measurements of clustering in real observations to test assumption in (1).

Recipe for simulating AGN on the cosmic web

Separation r_p (Mpc)

- Recent evidence: AGN do NOT live preferentially in group environments
- Observations can be reproduced by models in which accretion events occur stochastically in all galaxies independent of environment

Active supermassive black holes in the most extreme environments

- Massive Clusters of Galaxies, >10¹⁴ solar
- Galaxy lifecycle in such dense environments is very different:
 - ram pressure
 - strangulation
 - harassment
- Is black-hole growth also affected?

Active supermassive black holes in the most extreme environments

Muñoz Rodríguez, AG, et al., 2022

- Fraction of AGN in massive clusters as a function of cosmic time
- Model AGN in the Universe assuming no environmental dependence: Fails to reproduce the observations
- Massive Clusters of Galaxies at earlier times promote black-hole growth:
 - ram pressure at infall
 - interactions during infall

Active supermassive black holes in the most extreme environments

Muñoz Rodríguez, AG, et al., 2022

- Fraction of AGN in massive clusters as a function of cosmic time
- Model AGN in the Universe assuming no environmental dependence: Fails to reproduce the observations
- Massive Clusters of Galaxies at earlier times promote black-hole growth:
 - ram pressure at infall (Ricarte+20; Peluso+22)
 - interactions during infall

Outlook for the (new) Athena X-ray observatory

Measure accurate specific accretion rate distributions taking into account obscured AGN: more realistic mocks

Laloux, AG, et al. in prep: First attempt to characterise the specific accretion-rate distribution of obscured and unobscured AGN to high redshift.

Laloux, AG, et al. 2022: Athena can discover heavily obscured AGN out to high redshift (z~3-4).

Outlook for the (new) Athena X-ray observatory

Measure the incidence of AGN in clusters of galaxies to z~1 and beyond.

Cluster/Group catalogues in the 2030s: eROSITA, NewAthena (X-rays), CMB-S4/-HD, AtLAST (SZ)

Summary & conclusions

- Population studies provide information on AGN triggering mechanisms
- Semi-Empirical Forward-Modelling provide a powerful tool for interpreting observations and hypothesis testing:
 - Active black holes are mostly found in low density environments similar to our Local Group
 - Massive Clusters of Galaxies promote black-hole growth at early times. In contrast at present time very dense regions are suppressing AGN.
- The new Athena mission will provide improve semi-empirical AGN models and provide large samples for multi-parametric AGN population studies.