AGN feedback and the connection XRISM-Athena

E. Costantini (SRON)

Outline

- Why do we care about outflows?
- How do they look like?
- What can we do about it?

Importance of outflows

- Self sustenance of the BH system (balance between accretion and ejection)
- Enrichment of the host galaxy (Wyithe & Loeb 2003)
- They may affect dispersal of heavy elements into the IGM and ICM (Scannapieco & Oh 2004)
- Contributes to M-sigma relation (Kormendy & Ho 13)
- Important in explaining the luminosity function: 0.5-5% (Bower+06)

Importance of outflows

- Self sustenance of the BH system (balance between accretion and ejection)
- Enrichment of the host galaxy (Wyithe & Loeb 2003)

- They may c elements in (Scannapieco
- Contributes (Kormendy & F
- Important ir function: 0.5-5% (Bower+06)

outflows taxonomy

All kind of winds can coexist in the same AGN

XRISM , Athena & ARCUS: a new era for outflows

 XMM-Newton/PN: 2 warm absorbers
 1 obscurer + 1 UFO + emission lines: large uncertainties on physical and chemical parameters

- XRISM/Resolve: unprecedented detail at medium and high energy

 Athena/Resolve: resolution + effective area will access fainter fluxes/complicated regions

XRISM , Athena & ARCUS: a new era for outflows

- ARCUS: unprecedented resolution and effective area at soft energy and velocity resolved spectroscopy (PI: R. Smith @ CfA)

Ultra fast outflows

Highly ionized, high column density, fast variable and very high outflow velocity v=0.2-0.4c gas (Cappi+09, Tombesi+10, Chartas+07...)

Up to 30% of AGN may host an UFO (Tombesi+10).

UFO

In PDS456 P-cygni profile has been detected: Outflowing gas + emission. \rightarrow Large opening angle ! \rightarrow V_{out}=0.25 c \rightarrow L_{kin}/L_{bol}=20%!

(Nardini+15, Sci)

Low ionization UFO

- UFO-like features may be found also in low-xi gas
- Hosted by a spiral galaxy, dubbed "The milky way twin"
- Possible CO and radio counterpart
- Feedback in action?
- Is this gas accompanied by a high-xi UFO?
- Is this part of a shocked gas?

The alternative to UFO

- The 6-8 keV region is crowded: emission lines, warm absorbers, UFO and reflection
- Some of the UFO features may be mimicked by absorption by relativistically smeared lines in material above the disk (Gallo & Fabian 11, 13)
- Possibly all features are at play (Parker+22)
- Only a calorimeter can help disentangling this region (Barret & Cappi 19, Parker+22)

(Gallo & Fabian 11,

The obscurers

Bulk ejection

The UV spectrum

Broad UV absorption lines

A structured obscurer

 Obscurers show different covering factors, stratification and ionization

NGC5548, NGC3783, NGC3227, Mrk335,

- High-xi tail to the obscurer in NGC3783
- Reminiscent of Mrk766 (Risaliti+11)

(Mehdipour+17)

The timing behaviour of an obscurer

The obscured epoch shows a highly incoherent spectrum \rightarrow absortion at play Consistent with spectral parameters of the obscurer

- UV absorption:
 → Ionization & covering factor
 - Covers the BLR
- Historical warm absorbers are ionized by an obscured SED

→ Ejection from the accretion disk?

all famous sources do undergo episodes of heavy obscurations! A new element in the AGN system!

Warm absorbers

warm absorbers

- Observational parameters of WA are well determined:
 - Vout, v, NH, xi.
- Line emission (v, line ratio, covering factor)
 Connection between emission and absorption
 Stratification and thickness of the WA
- \rightarrow Geometrical structure of the WA
- \rightarrow Connection with disk winds
- \rightarrow Connection with host galaxy
- \rightarrow Chemical enrichment of the host
- \rightarrow Launching mechanism

The quick way for distance/density determination

Lower limit: calculate the radius at which gas reaches escape velocity

Upper limit: the thickness of the gas layer cannot be larger than its radius

$$R \leq \frac{L_{ion}C_g(R)}{\xi N_H}$$

 \rightarrow Classical warm absorbers would be located at torus scale!

 $R \ge \frac{2GM}{v_{out}^2}$

Outflows and feedback

Mass outflow rate:

$$M_{out} = 4\pi r N_H m_H C_g v_r \quad M_{sun} yr^2$$

Mass accretion rate:

$$M_{acc} = \frac{L_{bol}}{c^2 \eta} \qquad M_{sun} yr^{-1}$$

Kinetic Luminosity:

$$L_{kin} = 1/2 \dot{M}_{out} v^2$$

→Density is important for
• AGN physics
• AGN relation with surroundings

$$\xi = \frac{L^{ion}}{nr^2}$$

The quest for the density determination

- Metastable levels
- Time resolved spectroscopy
- Spectral timing

UV density diagnostic

- Metastable levels, detected in the UV: e.g. CIII*, FeII*. These are levels just above the ground level, which are populated by collisions → strong dependence on density.
- Can we do it in X-rays?

Density diagnostic lines in X-rays

- Seen in X-ray binaries (Miller+18) and AGN (Kaastra+04)
- AGN metastable levels are however weak and may be sensitive to higher densities (Mao+17)

Density estimate inrough variability

$$t_{eq}^{X^{i},X^{i+1}}(t \to t+dt) \sim \left[\frac{1}{\alpha_{rec}(X^{i},T_{e})_{eq}n_{e}}\right] \times \left[\frac{1}{\left(\frac{\alpha_{rec}(X^{i-1},T_{e})}{\alpha_{rec}(X^{i},T_{e})}\right)_{eq} + \left(\frac{n_{X^{i+1}}}{n_{X^{i}}}\right)_{eq}}\right]_{t+dt}$$

Monitoring the variability of the WA ionization as a function of the continuum flux is in principle sensitive to any density.

(e.g. Netzer+02, Krongold+05, 07, Detmers+08, Longinotti, Costantini +10, Kaastra+12 Arav+15, Silva, Uttley & Costantini 16, Juranova, Costantini & Uttley 22, Rogantini+ in prep)

 \sim

 \bigwedge

There will be an ideal distance that will best fit a given set of ions, correspondent to a WA component

Time resolved spectrosocopy

The time evolution of the WA shows that the gas goes back to equilibrium After a time that depends on the gas density

 → Great opportunity for future instruments: Athena, Arcus.
 (Rogantini+in prep,)

Timing Spectroscopy

- Reverberation is widely used to study the properties of the accretion disk (e.g. Uttley+14)
- Warm absorbers have a quantifiable effect on time lags (Silva, Uttley & EC16)

Timing the WA

- Time lags spectra are very complex to interpret and model (e.g. Alston+20)
- Uncorrelated light curves (e.g. absorbed and unabsorbed) provide a coherence <1 (e.g. De Marco+20)
- At every frequency the coherence bears the information on the density of the gas
- Athena will be able to study and model the coherence to look for the properties of the warm absorber (Juranova, EC & Uttley 22)

& Uttley 22,

С

'Juranova,

Timing the WA

- Time lags spectra are very complex to interpret and model (e.g. Alston+20)
- Uncorrelated light curves (e.g. absorbed and unabsorbed) provide a coherence <1 (e.g. De Marco+20)
- At every frequency the coherence bears the information on the density of the gas
- Athena will be able to study and model the coherence to look for the properties of the warm absorber (Juranova, EC & Uttley 22)

(Juranova, EC & Uttley 22,

The oddball

\rightarrow Long term variability:

- Ionization changes in a random fashion
- The 2 components change
- together in xi
- ~Same outflow velocity since 1997!
- N_H changes (factor > 6)
- No radiation pressure equilibrium

\rightarrow Short term variability:

- Log-xi does not change
- NH increases when flaring?

Galactic WA

Kpc scale winds Common in BAL QSO, but normal guasars?

- UV-X-ray simultaneous
 SPECTROSCOPY observation of 1H0419-577
 - Density determination for the UV/Xray absorber! Through metastable levels
 - Distance! kpc scale (3 kpc)!
- Discovery of an X-ray ionized absorber at kpc scale
- relic of a nuclear fast wind? → feedback in action in the host galaxy!

Chandra IMAGING follow
 up: confirmation of kpc soft
 X-ray emission!

Feedback budget

$$M_{out} = 4\pi r N_H m_H C_g v_r$$

	NH	R	V
Torus absorber	X	X	X
BLR/disk ejection	\checkmark	X	X
Galactic wind	X	\checkmark	X
Ultrafast outflows	\checkmark	X	\checkmark

Conclusions

- AGN can host multiple outflows
- Some of them may be important for feedback
- The future
 - Timing and time-resolved spectroscopy
 - Metastable levels
 - \rightarrow Feedback
 - →Geometry
 - \rightarrow Launching mechanism