Revealing the physics of multimessenger events using X-rays

Hendrik van Eerten University of Bath (UK)

Athena X-ray Advances: ASST & ACO Science Webinars Jan 31 2022

• short gamma-ray bursts (sGRBs)

Gamma-ray bursts

Gentle upwards slope from synchrotron theory

 $\log F_{\nu}$

A non-thermal tail of energetic charged particles makes for extended synchrotron emission

> particles cool too fast to sustain radiation at high frequencies (synchrotron cooling)

plasma opaque to its own emission (synchrotron self-absorption)

no emission beyond the acceleration limit

og

 $\log F_{v}$

injecting electrons, starting at v_m , a non-thermal tail of slope $-p \approx -2.2$ (in energy)

 ν_m $\frac{1-p}{2} \cong -0.6$ $^{1}/_{3}$ particles cool too fast v_a to sustain radiation at high frequencies 2 (synchrotron cooling) no emission beyond the acceleration limit $\log \nu$

injecting electrons, starting at v_m , a non-thermal tail of slope $-p \approx -2.2$ (in energy)

The synchrotron spectrum $\log F_{v}$ $\mathcal{V}_{\mathcal{C}}$ -0.5 $\frac{1}{3}$ X-rays Vm $\frac{p}{2} \cong -1.1$ γ-rays $\rightarrow \log \nu$

Gamma-ray prompt emission

GRB prompt emission remains a persistent puzzle 1 2

 F_{ν}

0.66

Zhang+ 2012

≅ -1.1

GRB prompt emission remains a persistent puzzle $1 \qquad 2 \qquad 1 \qquad 2 \qquad \frac{F_{\nu}}{\nu} = -1.5 \quad \frac{F_{\nu}}{\nu} = -0.66 \qquad \frac{F_{\nu}}{\nu} = -0.66$

Yu+ 2015 A&A 573, A81

Yu, van Eerten+ 2015 A&A 583, A129

Prompt spectrum rise too flat for synchrotron?

 $vF_{v} = 0.5$ $vF_{v} = 1.33$

Prompt spectrum turnover too abrupt for synchrotron?

A bigger lever arm thanks to X-rays

multi-messenger era dynamics of gamma-ray bursts

Old style

New style

GW170817 and GRB 170817A

Abbott+ 2017, ApJL 848, L12

GRB 170817A broadband afterglow observable for long time

Troja, van Eerten+ 2019, MNRAS 489, 1919

Note how all three light curves look basically the same

Troja, van Eerten+ 2019, Haggard+ 2017, Hallinan+ 2017, Mooley+ 2018, D'Avanzo+ 2018, Lyman+ 2018, Dobie+ 2018, Margutti+ 2018, Troja+ 2017, 2018, Lamb+ 2019,

170817 tightly constrains the energy distribution of shock-accelerated electrons

Back to 170817's light curve:

Afterglows and jet lateral structure

All GRB jet launching scenarios give rise to a measure of structure in the outflow geometry. NS merger debris might well further add to this

Structure can often be modeled straightforwardly with a simplified power-law/Gaussian

initial structure was always there, but only key feature for off-axis observers

Ryan, van Eerten+ 2020, ApJ 896, 166

STRUCTURED JETS

STRUCTURED JETS

Follow-up, latest (radio & X-rays)

- Blue data points: shifted radio
- Black data points: X-rays
- left figure had X-ray data rebinned

tension as shown above stands at 3.5σ , (changes with model tweaks)

see also Hajela+ 2021, Balasubramanian+ 2021, ...

Light curve result, no extra luminosity

- Fits use Gaussian structured jet (PL fits show similar results)
- Direct co-fit for VLBI observations
- gravitational wave-based prior for orientation
- avoid unphysical electron distribution at late times ('Deep Newtonian regime')

Evolution of the posterior of Gaussian jet model

- 1250 days
- Gravitational wave prior (including H_0 assumption)

Evolution of the posterior of Gaussian jet model

- 1250 days
- Gravitational wave prior (including H_0 assumption)
- including centroid motion in fit

Evolution of the posterior of Gaussian jet model

- 1250 days
- Gravitational wave prior (including H_0 assumption)
- including centroid motion in fit

X-rays in the multimessenger era

Systems that can provide shattering flares

Resonance shattering flares in the X-rays

Neill+ 2021 Submitted, ArXiv: 2111.03686

The point being...

the regular afterglow curve (yellow) will be fainter for observers further off-axis, while the RSF afterglow is quasi-spherical

 $\log F_{v}$

 $\log F_{v}$

synchrotron emission

 $\log F_{v}$

synchrotron emission

 $\log F_{v}$

synchrotron emission + scattering processes

 $\log F$

afterglow GRB 190114C

Blazars: non-thermal emission from fast-moving plasma

TXS 0506+056, a flaring (90 days) BL Lac blazar coincident with an Icecube neutrino detection

img: VERITAS Abeysekara+ 2018

 $\log F_{v}$

synchrotron emission + scattering processes

afterglow GRB 190114C

(img credit: Petropoulou)

A role for the protons in the SED?

Bethe-Heitler ("pe") process creates electron / positrion pairs that can subsequently produce synchrotron radiation $p + \gamma \rightarrow p + e^+ + e^- \rightarrow synchrotron emission$

A toy-model example: Leptonic and lepto-hadronic models for Mrk 421

Athena

Athena: not a transient chaser

Athena multi-messenger white paper 2021

Athena multi-messenger white paper 2021

GRB 170817A and Athena

Athena and the rate of successful jets

The VLBI results for GRB 170817A are wonderful, but this might not always be available in order to tell whether there is a directed outflow

Lamb & Kobayashi 2016 blue: successful burst; red: failed bursts

If the jet Lorentz factor distribution has a tail to low values, many GRB jets will remain opaque to their prompt emission. A failure to break out (a "choked jet") will lead to a quasi-spherical shock-wave

400

The late-time (ie *faint*) light curve slope will reveal whether the jet is collimated or not. Athena can capture this slope best.

Time [d]

200

300

Troja, van Eerten+ 2019

Neutron star mergers with Athena

Athena multi-messenger white paper 2021

Summary: The joys of X-rays

- An extra perspective on GRB prompt emission
- Probe the nature of particle shock-acceleration (across many decades for e.g. GRB 170817A)
- Revealing the lateral energy structure of GRB jets
- A detectable afterglow for resonance shattering flares from NS-NS & NS-BH mergers
- Part of the toolkit for constraining the signatures of hadronic emission models (e.g. in blazars), and thus the origin of neutrinos & cosmics rays
- a promising future for transients studies with ATHENA