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Gamma-ray bursts
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GRB prompt emission remains a 
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GRB prompt emission remains a 
persistent puzzle

• Prompt spectrum rise too flat for synchrotron?
• Prompt spectrum turnover too abrupt for synchrotron?
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A bigger lever arm thanks to X-rays
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multi-messenger era dynamics of 
gamma-ray bursts

Old style New style
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GW170817 and GRB 170817A

Abbott+ 2017, ApJL 848, L12



GRB 170817A broadband afterglow 
observable for long time

Note how all three light curves look basically the same

Troja, van Eerten+ 2019, MNRAS 489, 1919



The synchrotron spectrum & 170817
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Troja, van Eerten+ 2019, Haggard+ 2017, Hallinan+ 2017,
Mooley+ 2018, D’Avanzo+ 2018, Lyman+ 2018, Dobie+ 2018,
Margutti+ 2018, Troja+ 2017, 2018, Lamb+ 2019, ….



170817 tightly constrains the energy 
distribution of shock-accelerated electrons

Spitkovsky+ 2008, ApJL 682, L5

Troja, van Eerten+ 2019, MNRAS 489, 1919



Back to 170817’s light curve:

(X-ray)
flux

Time

GRB 170817

170817 and its shallow rising slope:
• must be off-axis (ie rising, not falling)
• rise not steep enough for beamed emission 

seen sideways
✓ Needs a jet with energy structure



Afterglows and jet lateral structure

• All GRB jet launching scenarios give rise to a measure of
structure in the outflow geometry. NS merger debris might well further add to this

• Structure can often be modeled straightforwardly with a simplified power-law/Gaussian

Ryan, van Eerten+ 2019

Nagakura+ 2014



initial structure was always there, but 
only key feature for off-axis observers

Ryan, van Eerten+ 2020, ApJ 896, 166



STRUCTURED JETS

Anatomy of a structured jet

t3(1-2p+g)/(8+g)

(for a Gaussian)



STRUCTURED JETS

Anatomy of a structured jet

t3(1-2p+g)/(8+g) GW 170817A

α = 0.90±0.06

⟹ g=8.2  

⟹ θobs=5.7θc

(for a Gaussian)

Ryan, van Eerten+ 2019



Follow-up, latest (radio & X-rays)

Troja+  2022 MNRAS 510, 1902
• Blue data points: shifted radio
• Black data points: X-rays
• left figure had X-ray data rebinned

see also Hajela+ 2021, Balasubramanian+ 2021, ...

tension as shown above stands at 3.5𝜎,
(changes with model tweaks)



Light curve result, no extra luminosity

• Fits use Gaussian structured jet (PL fits show similar 
results)

• Direct co-fit for VLBI observations
• gravitational wave-based prior for orientation
• avoid unphysical electron distribution at late times 

(‘Deep Newtonian regime’)

Ryan, Van Eerten+, in prep



Evolution of the posterior
of Gaussian jet model

• 1250 days
• random sky orientation prior



Evolution of the posterior
of Gaussian jet model

• 1250 days
• Gravitational wave prior 

(including 𝐻0 assumption)



Evolution of the posterior
of Gaussian jet model

• 1250 days
• Gravitational wave prior 

(including 𝐻0 assumption)
• including centroid motion in fit



Evolution of the posterior
of Gaussian jet model

• 1250 days
• Gravitational wave prior 

(including 𝐻0 assumption)
• including centroid motion in fit

X-rays in the multi-
messenger era 



Resonance shattering flares in the 
X-rays



Systems that can provide 
shattering flares

Neill+ 2021 Submitted, ArXiv: 2111.03686



Resonance shattering flares in the 
X-rays

Neill+ 2021 Submitted, ArXiv: 2111.03686

The point being… 
the regular afterglow curve (yellow) will be fainter for observers further off-axis,
while the RSF afterglow is quasi-spherical



revisiting the non-thermal spectrum
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revisiting the non-thermal spectrum
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MAGIC+ 2019, Nature



Blazars: non-thermal emission from fast-moving plasma

...plus neutrino(s)?

img: VERITAS
Abeysekara+ 2018

image from Gao+, 2019

TXS 0506+056, a flaring (90 days) BL Lac blazar 
coincident with an Icecube neutrino detection
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revisiting the non-thermal spectrum
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(img credit: Petropoulou)



A role for the protons in the SED?

Petropoulou & Mastichiadis 2015

𝑝 + 𝛾 → 𝑝 + 𝑒+ + 𝑒− → 𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑡𝑟𝑜𝑛 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛
Bethe-Heitler (“pe”) process creates electron / positrion pairs that can subsequently produce synchrotron radiation 



A toy-model example:
Leptonic and lepto-hadronic models for 
Mrk 421

Jimenez-Fernandez & van Eerten 2021, submitted



Athena



Athena: not a transient chaser

Athena multi-messenger white paper 2021
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The sensitivity of Athena

Swift XRT

Swift on target

Athena on target

Athena multi-messenger white paper 2021



GRB 170817A and Athena

2030-2040

Athena
sensitivity

Broadband observations
from radio with VLA to X-rays
with Chandra (and MANY
more instruments across
the broadband).
Shown left here are X-rays.



Athena and the rate of successful jets

Lamb & Kobayashi 2016
blue: successful burst; red: failed bursts

If the jet Lorentz factor distribution has a
tail to low values, many GRB jets will
remain opaque to their prompt emission. A 
failure to break out (a “choked jet”) will 
lead to a quasi-spherical shock-wave

The VLBI results for GRB 170817A are wonderful, but this might not always be available
in order to tell whether there is a directed outflow

Troja, van Eerten+ 2019

The late-time (ie faint) light curve slope
will reveal whether the jet is collimated or not.
Athena can capture this slope best.



Neutron star mergers with Athena

170817

Athena multi-messenger white paper 2021



Summary:
The joys of X-rays

• An extra perspective on GRB prompt emission

• Probe the nature of particle shock-acceleration 
(across many decades for e.g. GRB 170817A)

• Revealing the lateral energy structure of GRB jets

• A detectable afterglow for resonance shattering flares 
from NS-NS & NS-BH mergers

• Part of the toolkit for constraining the signatures of 
hadronic emission models (e.g. in blazars), and thus the 
origin of neutrinos & cosmics rays

• a promising future for transients studies with ATHENA




