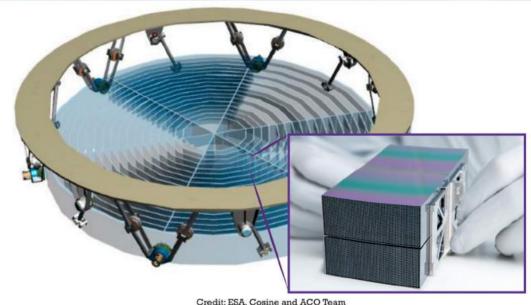

cosine

Beyond XMM-Newton: development of the largest X-ray mirror for Athena

Laurens Keek (cosine) on behalf of the SPO team EAS, 2020-07-02

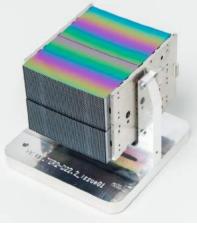

From XMM to Athena: New Technology for Largest Optic

XMM-Newton

- 0.35 m radius
- Ni shell replication
 - Concentric shells

2020-07-02

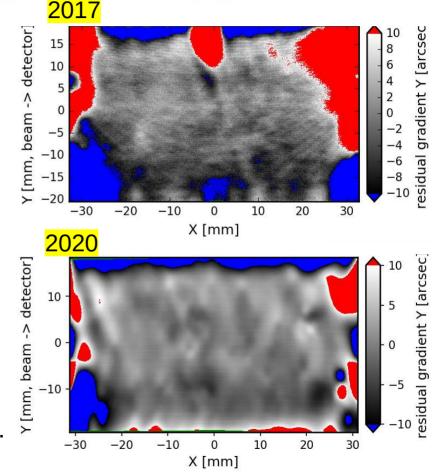
Athena


- 1.2 m radius
- Silicon Pore Optics
 - Stacks of mirrors form mirror modules
 - Mirrors diced from Si wafers from semiconductor industry
 - Combines into the largest X-ray mirror ever flown EAS \$16d 784

Silicon Pore Optics: Cost-Effective Increase of Mirror Area

	XMM-Newton	Athena		
Technology	Ni shell replication	Silicon Pore Optics		
Outer radius	0.35 m	1.2 m		
Mirror thickness	0.47 - 1.07 mm	0.17 mm (0.11)		
Number of mirrors	58 shells * 3 telescopes = 174	1080 shells in 606 modules = 87,000		
Performance:				
Effective area (1 keV)	0.14 m ²	1.9 m ²		
PSF HEW (1 keV; on axis)	13 arcsec	5 arcsec		

Modular design decouples the problem of large area and high performance


Robotic Manufacturing: Consistent High Quality Optics

- Employ processes and equipment from semiconductor industry
 - Plates cut from Si wafers, pores carved out to create ribs
- Robotic, automated, cost efficient stacking of plates
 - Combine into mirror modules to form modular optics
- Recent developments: improved reproducibility and cleanliness.
 - New wetbench will automate part of the coating process.
 2020-07-02
 EAS \$16d 784

Fast Progress in Improving Optical Quality

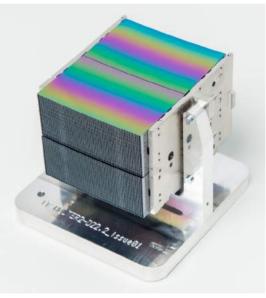
- Past years: identified sources of slope deviations in the mirrors (red/blue)
 - Measured thickness of the plates down to nm
 - Developed numerical model of stacks
 - Performed stacking experiments
- Implemented substantial improvements
 - Plate defects addressed
 - Plate cleaning and handling improved
 - Robotic stacking optimized
- Remaining issues along the edges are understood, solutions are being tested right now.

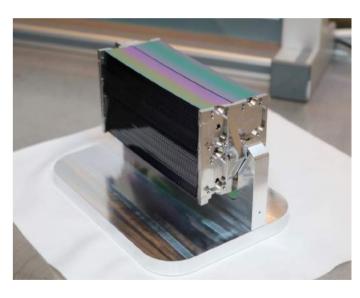
X-Ray Beamline Measures Performance Improvements

	XOU-066	XOU-067	XOU-92
	2019	2019	2020
Half-energy width (arcsec)	17.5	13.2	9.9

- Outer-radius XOUs (2-reflection focusing system).
 - Provide the bulk of the effective area
- Half-energy width measured for 34 plates, central 70% area.
- SPO have surpassed XMM performance.
 - Development continues in order to meet 5 arcsec requirement for Athena.

1.6 keV X-ray pencil-beam at BESSY, Berlin


cosine


Successfully Produced Mirror Modules for 3 Radii

Athena's inner ring (R=277 mm), middle (737 mm),

outer (R=1500 mm)

Conclusions

- Improving on large X-ray optics beyond XMM-Newton requires a new technology: Silicon Pore Optics.
- Robotic stacking of mirror plates to mass-produce a large number of optics modules.
 - Optimizing reproducibility and cleanliness.
- Large effort in understanding slope deviations.
 - Substantial improvements achieved in cleanliness and optical performance.
 - Remaining issues understood and currently being addressed.
- On track for the Mission Adoption Review in 2022, and launch in 2031.

Website: highenergyoptics.com Email: l.keek@cosine.nl 2020-07-02 EAS \$16d 784

cosine

measurement systems

cosine

Oosteinde 36 2361 HE Warmond The Netherlands Tel. +31 71 528 49 62 info@cosine.nl

2020-07-02

EAS S16d 784