The Wide Field Imager
for AthenaArne Rau (MPE, WFI Project Scientist)

The X-ray Universe 2017, Rome, June 6-9

WFI Science Drivers

- Key Science Requirements
- Instrument

WFI Science Drivers

The Hot and Energetic Universe

How do black holes grow and shape the Universe?

How does ordinary matter assemble into the large scale structures that we see today?

See X. Barcons' plenary presentation on Thursday

Nandra et al. 2013, arXiv 1306.2307

•Formation and Early Growth of Black Holes —high-z population and seeds of SMBH

- Accretion through cosmic time
 - complete census of AGN at the peak of activity of the universe
- Accretion Physics
 - spins of compact objects
 - reverberation mapping of X-ray binaries
- Formation and Evolution of Groups and Clusters of Galaxies
 - finding early groups
 - non-gravitational heating processes (entropy profiles)
- AGN feedback in clusters
 - AGN ripples

(Credit: A. Merloni)

et al. 2013) (Aird, Comastri

- Formation and Early Growth of Black Holes
 - high-z population and seeds of SMBH

Accretion through cosmic time –complete census of AGN at the peak of activity of the universe

- Accretion Physics
 - spins of compact objects
 - reverberation mapping of X-ray binaries
- Formation and Evolution of Groups and Clusters of Galaxies
 - finding early groups
 - non-gravitational heating processes (entropy profiles)
- AGN feedback in clusters
 - AGN ripples

- Formation and Early Growth of Black Holes
 - high-z population and seeds of SMBH
- Accretion through cosmic time
 - complete census of AGN at the peak of activity of the universe

Accretion Physics –spins of compact objects –reverberation mapping of X-ray binaries

- Formation and Evolution of Groups and Clusters of Galaxies
 - finding early groups
 - non-gravitational heating processes (entropy profiles)
- AGN feedback in clusters
 - AGN ripples

- Formation and Early Growth of Black Holes
 - high-z population and seeds of SMBH
- Accretion through cosmic time
 - complete census of AGN at the peak of activity of the universe
- Accretion Physics
 - spins of compact objects
 - reverberation mapping of X-ray binaries
- Formation and Evolution of Groups and Clusters of Galaxies
 - –finding early groups–non-gravitational heating processes(entropy profiles)
- AGN feedback in clusters
 - AGN ripples

2013) Reiprich et al. (Pointecouteau,

(Ettori, Pratt et al. 2013)

- Formation and Early Growth of Black Holes
 - high-z population and seeds of SMBH
- Accretion through cosmic time
 - complete census of AGN at the peak of activity of the universe
- Accretion Physics
 - spins of compact objects
 - reverberation mapping of X-ray binaries
- Formation and Evolution of Groups and Clusters of Galaxies
 - finding early groups
 - non-gravitational heating processes (entropy profiles)

AGN feedback in clusters –AGN ripples

(Croston, Sanders et al. 2013)

Key Science Requirements

Key science requirements for high-z AGN:

Key science requirements for GBH spin:

Hardware Implementation

WFI Proto-Consortium

Germany, Austria, Denmark, France, Great Britain, Italy, Poland, Portugal, Switzerland, Greece, USA

+ potential partners: Japan

Principal Investigator: Paul Nandra (MPE)Project Manager:Norbert Meidinger (MPE)Project Scientist:Arne Rau (MPE)

science instruments module

(Credit: ESA CDF)

Focal Plane

Large Detector

- 40'x40
- 4x512x512 pxl
- <5ms/frame
 <10µs/row

Fast Detector

- defocused
- 64x64(/2) pxl
- <80µs/frame
 <2.5µs/row

Both

- 130µmx130µm
- DEPFET technology

The WFI uses matrices of DEPFET active pixel sensors where all pixels in one active row are read out simultaneously.

1st DEPFET Prototype Production (Autumn '16)

2 objectives full width 512 x 64 operation of large-scale pixel detectors formats representative for flight devices full height 128 x 512 quarter homogeneity over large 256 x 256 area effect of long signal and supply lines **DePFET** evolution 64 x 64 test vehicle variations in layout prototype 64 x 64 variations in technology variations in readout

(Courtesy: P. Lechner)

1st production of the WFI DEPFETs finished:

- all technology parameters in spec
- good pixel yield
- yield-limiting factor identified
- counter actions defined, test project started
- devices tested at MPE

flight devices

• pre-flight production start in mid-'17

Excellent spectroscopic performance achieved for 64x64 matrix under nominal operation conditions.

2015-2018 WFI Technology Development Activity

Filter-Wheel:

optical blocking filter. Critical: ac. noise during launch

Detector: DEPFET sensors + FEE ASICs. Critical: Performance verification

Detector Electronics: power conditioning + pre-processing. Critical: real-time pre-processing

Parameter	Value
Energy Range	0.2-15 keV
Field of View	40' x 40'
Angular Resolution Pixel Size	PSF=5`` (on-axis) 130 x 130 μm² (2.2``)
Large DEPFET detector	1024 x 1024 pixel (4 quadrants) ≈ 14cmx14cm
Fast DEPFET detector	64 x 64 pixel (split full frame mode - 2 halves readout)
Operating mode	Rolling shutter
Operating time	Nonstop possible
Quantum efficiency (on-chip + ext. filter)	20% @ 277 eV 80% @ 1 keV 90% @ 10 keV
Energy Resolution	$FWHM(1 \text{ keV}) \le 80 \text{ eV}$ (end of life) $FWHM(7 \text{ keV}) \le 170 \text{ eV}$ (end of life)
Time Resolution full frame Fast detector Large detector	80 μs <5 ms
Count Rate Capability	Fast DEPFET (defocused) 1 Crab: >80% throughput, <1% pile-up
Particle Background (L2 orbit)	< 5 × 10 ⁻³ cts cm ⁻² s ⁻¹ keV ⁻¹

http://www.mpe.mpg.de/ATHENA-WFI/