SXA, Granada – 24 October 2017

Synergies between OCTOCAM and ATHENA

Antonio de Ugarte Postigo (IAA-CSIC)

The OCTOCAM consortium

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

NSTITUTO de ASTROFISICA

The OCTOCAM team

Science Advisory Committee

Álvaro Álvarez-Candal, Brazil Rodolfo Angeloni, Chile Stefano Bagnulo, UK Franz Bauer, Chile Amanda Bayless, USA Melina Bersten, Argentina Marcelo Borges Fernandes, Brazil Tom Broadhurst, Spain Nat Butler, USA Brad Cenko, USA Lydia Cidale, Argentina Jesus Corral-Santana, Chile Jean-Michel Desert, Netherlands Vik Dhillon, UK René Duffard, Spain Robert Fesen, USA Gastón Folatelli, Argentina

Jonathan Fortney, USA Ori Fox, USA Anna Frebel, USA Lluís Galbany, Chile Rafael Garrido Haba, Spain Karl Glazebrook, Australia Daryl Haggard, USA Eric Hintz, USA Julie Hlavacek-Larrondo, Canada David Kaplan, USA **Oleg Kargaltsev, USA** Chryssa Kouveliotou, USA Adam Kraus, USA Michaela Kraus, Czech Republic Ho-Gyu Lee, South Korea Teo Muñoz-Darias, Spain Jerome Orosz, USA

Thomas Pannuti, USA Jennifer Patience, USA **Daniel Perley, USA** Noemí Pinilla-Alonso, USA Brian Schmidt, Australia Steve Schulze, Chile Denise Stephens, USA Nicole St- Louise, Canada Rachel Street, USA Juan Carlos Suárez, Spain Nial Tanvir, UK **Ezequiel Treister, Chile** Sergio Torres Flores, Chile Stefano Valenti, USA Daniel Vanden Berk, USA Sjoert van Velzen, USA Stefanie Wachter, Germany

Kelly Smith

Ernesto Sanchez-Blanco Manuel Maldonado

WASHINGTON, DC

UNIVERSITY

Amanda Bayless

Kristian Persson

)SE

Covering the scientific needs of the 2020s

- New facilities, new role for Gemini: • LSST, ALMA, SKA, ELTs, JWST, ATHENA...
- Workhorse instrument: • Many different science topics
- Simultaneous VIS/NIR •
- **Time domain Astrophysics** •
- Use past experience to create a • new instrument concept

Science Drivers

- Rapid characterization of transients (follow-up of LSST)
- Physical understanding of extreme phenomena (gamma-ray bursts, supernovae, magnetars, X-ray binaries)
- The origin of our solar system: comets, asteroids, transneptunian objects
- Asteroseismology
- The first generation of stars and their environments
- The evolution of the Universe since the first galaxies

- Transients
- Trans-Neptunian objects
- Extrasolar planets
- Asteroseismology & pulsating stars
- Massive stars
- Brown dwarfs
- Low-mass binaries
- Low metallicity stars
- Isolated neutron stars

- Magnetars
- Interacting binaries
- Millisecond pulsar binaries
- X-ray binaries
- Supernovae
- Supernova remnants
- Gamma-ray bursts
- Active galactic nuclei
- Tidal disruption events
- Galaxy clusters

OCTOCAM concept

- Multi-channel (8!)
- Wide wavelength range (3700-23500 Å)
- Multiband imaging
- Broad band spectroscopy
- High-time resolution
- GROND + X-shooter + ULTRACAM + MORE!
 = OCTOCAM

temporal resolution – spectral Coverage spectral resolution – spectral Coverage Spectral resolution – spectral resolution – spectral Coverage Spectral Resolution – spectral R

Instrument design

Observing Modes

Imaging:

- Standard: 180"x180"
- Wide: 254" diameter
- Windowed
- Standard binning is 1x1
 2x2 and 1x2 will be available

Spectroscopy:

- Full slit (180")
- Windowed
- Standard binning is 1x1, 2x2 and 1x2 will be available

Imaging

- Simultaneous VIS/NIR observations in g, r, i, z, Y, J, H, K_S
- Frame transfer detectors + • HAWAII-2RG
- Negligible overheads ullet
 - No filter change time loss
 - No readout time loss
- 3'x3' or 4.2'Ø field of view
 - 3'x3'x8 = 72 sqr. Arcmin
 - 4.2'Øx8 = 112 sqr. Arcmin

Detector arrangement

VISIBLE (*g*′, *r*′, *i*′, *z*′)

Near-IR (Y, J, H, K_s)

2k x 2k Hawaii-2RG

Spectroscopy

- From 3 700 Å to 23 500 Å
 - [OII] 3727/3729 Å at z = 0
 - H-alpha at z = 2.5
 - Extinguished sources
- High efficiency VPH gratings
- Resolution of 3500-4500
 - Look through the NIR sky lines
 - Continuum of faint sources
 - Velocity field in galaxies
- Long slit 3 arcmin
- Atmospheric Dispersion Corrector

Atmospheric dispersion corrector

- Correcting all the wavelength range
- Will maintain all wavelengths within 0.54" slit
- Operating down to 40 deg elevation
- Loss of efficiency ~10%, worse at the edges
- Retractable to boost efficiency when not needed (imaging and parallactic slit).

Instrument Eficiency

- Average peak efficiency: 48% imaging, 40% spectroscopy
- Average efficiency: 46% imaging, 30% spectroscopy

Design guidelines

- Efficient
- Simple
- Compact
- Light-weight
- Minimimum number of moving parts

- High efficiency dichroics
- VPH gratings
- Small pupil size (~50 mm)
- Single long slit
- Optics shared by different arms

Five years of project

- Kick-off on 19 April 2017
- 5 years of Project
- 6 phases: Design, Construction, Delivery and Commissioning at the Telescope
- Will be ready for science on the spring of 2022

Possible upgrades

Integral field unit (IFU)

- Image slicer 9.7"x6.8"
- 0.4" resolution elements
- Wavelength coverage UV+IR!
- Full spectral resolution at any seeing
- ✓ GRB & SN host galaxies
- ✓ Massive star environment
- ✓ TNO & comets
- Adaptive Optics IFU:
 - 2.5"x3.6", with 0.08" elements
 - 950-2350 nm coverage

Spectropolarimeter

- Based on the design of Snik et al. (2012) for X-shooter
- ✓ Structure and magnetism in SNe
- ✓ Stellar physics
- Characterization of transients

Sometime in 2022...

OCTOCAM specifications

Simultaneous spectral range	Photometry: <i>grizYJHK</i> Spectroscopy: 3700-23500 Å
Field of view	Imaging:3' x 3'4.2' diameterSpectroscopy:3' Long slit
Plate scale	0.18"/pixel
Spectral resolution	3 500 – 4 500 standard VPH
Expected average efficiency	Imaging: ~46% Spectroscopy: ~30%
Maximum full-frame rate	~ 4 Hz
Observing modes	Multiband imaging Wide band spectroscopy (long slit) High time-resolution

OCTOCAM – Antonio de Ugarte Postigo

OCTOCAM

Thank you!