ATHENA

Athena: ESA's X-ray observatory to study the Hot and Energetic Universe

Francisco J. Carrera, on behalf of the ASST

Instituto de Física de Cantabria (CSIC-UC), Santander, Spain

Contents

- Athena in a nutshell
- The Athena science theme: Hot and Energetic Universe
- Mission concept & payload
- Project development status
- Athena science
- Synergies
- Community
- Outlook

Thanks to the Athena Science
Study Team: M. Guainazzi,
K. Nandra. D. Barret, J.W.
den Herder, A.
Decourchelle, A.C. Fabian,
H. Matsumoto, L. Piro, R.
Smith, R. Willingale, (X.
Barcons)

- WG chairs
- ACO
- Many others...

Advanced Telescope for High-Energy Astrophysics

- Second Large (L2) mission of ESA Cosmic Vision 2015-2025
- Science theme: The Hot and Energetic Universe
 - How does ordinary matter assemble in the large-scale structures?
 - How do black holes grow and shape galaxies?
- In addition:
 - Fast ToO capability to study transient sources
 - Observatory science across all corners of Astrophysics (2/3 A0)

More info in:

http://www.the-athena-x-ray-observatory.eu

Athena mission concept

- Single telescope, using Si pore optics. 12m focal length
 - WFI sensitive imaging & timing
 - X-IFU spatially resolved high-resolution spectroscopy
- Movable mirror assembly to switch between the two instruments
- Launch ≤2029, Ariane 6.4
- L2 halo orbit (TBC)
- Lifetime > 4 yr

The Athena X-ray optics

- Athena optics development:
 - Light-weight Si-pore optics
 - Grazing incidence optics, Wolter-I type (paraboloidhyperboloid), largely with conical approximation
 - Vigorous development programme on-going.
- Performance:
 - 5′′ HEW on-axis
 - Graceful degradation offaxis, <10´´ @ 30´
 - ≥1.4 m² effective area @ 1 keV, 0.25 m² effective area @ 6 keV
 - Limited vignetting at 1 keV

<u>#AthenaNuggets by</u> <u>Willingale</u>

Willingale, Pareschi et al. 2013, arXiV: 1308.6785

The Athena X-ray optics

Institute de Física de Cantabria

Wide Field Imager (WFI)

- Based on Si detectors, using Active Pixel Sensors based on DEPFETs.
- Key performances:
 - 120-150 eV spectral resolution
 - 2.2´´ pixel size (PSF oversample)
 - Field of view: 40´x40´
 - Separate chip for fast readout of brightest sources
 - Readout speed up to ~30 MHz
- Consortium led by MPE, with other European partners and NASA
- Optimized for sensitive and wide imaging and intermediate resolution spectroscopy, up to very bright sources

See Arne Rau's talk

#AthenaNuggets by Rau

X-ray Integral Field Unit (X-IFU)

- Cryogenic imaging spectrometer, based on Transition Edge Sensors, operated at 50 mK featuring an active cryogenic background rejection subsystem
- Consortium led by CNES/IRAP-F, with SRON-NL, INAF-IT and other European partners (ES, CH, BE, FI, PL, DE), NASA and JAXA.
- Key performance parameters:
 - 2.5 eV energy resolution <7 keV
 - FoV 5' diameter
 - Pixel size <5´´

#AthenaNuggets by Duband

E. Pointecouteau, P. Peille, E. Pointecouteau, E. Rasia, V.Biffi, S. Borgani, K. Dolag, J. Wilms

Barret et al. 2013, arXiV: 1308.6784 http://x-ifu.irap.omp.eu/

SXA17, IAA, Granada, 23 October 2017

See talks by Didier Barret and Javier Gómez-Elvira

Athena Project development: Current status

- Phase A on-going:
 - Mission concepts are sound
 - Mature mid-Phase A spacecraft design
 - Mass constraint (conservative 7 tons) can be achieved with at most minor reduction in mirror diameter (1 row/ 20)
 - Instrument thermal and mass budgets to be consolidated
 - Consolidation of the Cost at Completion underway: saving options
 - Some have little or no science impact
 - Reduced ToO capabilities? (exploring soft solutions)
 - Reduced mirror to 15 rows (1.4m²@1keV) if needed for cost-compliance

Athena remains a large effective area mission

A giant leap in high-resolution spectroscopy: X-IFU

Athena: a powerful survey machine I WFI

Athena survey over the nominal 4 year mission: 4×1 Ms + 3×700 ks + 10×600 ks + 103×60 ks

Courtesy J. Aird (IoA)

Athena: a powerful survey machine II WFI

WFI Nsou/pointing/log(flux)

≥400,000 AGN (≥150 @6≤z≤8) - Compton-thick up to z≅3

Courtesy G.Lanzuisi, A.Comastri (OABo); Aird et al., 2013, ArXIV;1306.2325

The Hot and Energetic Universe

- The Hot Universe: How does the ordinary matter assemble into the large-scale structures that we see today?
 - >50% of the baryons today are in a hot (>10⁶ K) phase
 - there are as many hot (> 10⁷
 K) baryons in clusters as in stars over the entire Universe
- The Energetic Universe: How do black holes grow and influence the Universe?
 - Building a SMBH releases 30 × the binding energy of a galaxy
 - 15% of the energy output in the Universe is in X-rays

Nandra, Barret, Barcons et al. arXiv:1306.2307

The Hot Universe - baryonic assembly

Schaye et al. 2015

Galaxy clusters 10 amin

Athena/WFI 1Ms simulation MPE & WFI team

Evolution of hot cluster gas

1000 Search for the first groups Entropy profile K [ke// um] 100 z=210 1000 130 r (kos) gravity **Excess energy:** 1000 SNe. AGN? K (beV cm) 100 z=1500.1 10 100 1000 r (kpc)

Energy deposition history

Ettori, Pratt et al. 2013 arXiv1306.2322 Pointecouteau, Reiprich et al. 2013, arXiv: 1306.2319

See Arne Rau's talk

of galaxies at z>2

Chemical evolution

- Clusters of galaxies are closed boxes, all gas is virialised in the DM potential well
- Cosmic chemical evolution best traced by cluster gas
- Constraints on SN types and IMF

Courtesy: J. de Plaa 2016

ratio (X/Fe)/(X/Fe)

Abundance 0

Cluster bulk motions & turbulence

Athena will measure gas bulk motions and turbulence down to 20 km/s #AthenaNuggets by Pratt

Courtesy: P. Peille, E. Pointecouteau, V. Biffi, E. Rasia, K. Dolag, S. Borgani, J. Wilms

Ettori, Pratt et al. 2013 arXiv1306.2322 Pointecouteau, Reiprich et al. 2013, arXiv: 1306.2319

SXA17, IAA, Granada, 23 October 2017

See Didier Barret's talk

AGN feedback on cluster scales

- Dissipation AGN energy into ICM
 - Energy stored in hot gas around bubbles via bulk motions and turbulence.
 - History of radio cluster feedback via ripples.
 - AGN jet fuelling vs. cooling through temperature distribution.
 - Shock speeds of expanding radio lobes

Cluster core z=0.05 WFI 50ks

See Didier Barret's talk

Croston, Sanders et al. 2013 arXiv1306.2323 Simulations by S. Heinz

Aperitif: Hitomi(Feb-Mar 2016)

- The JAXA Hitomi satellite was launched in February 2016, with an X-ray calorimeter on board (resolution~5 eV)
 - Unfortunately, the S/C was lost in March 2016
 - But it had taken 275 ks of data of the Perseus cluster, above 2 keV.
 - DATA ARE AMAZING!

<u>#AthenaNuggets</u> by Fabian

Perseus cluster core turbulence <164 km/s

Hitomi coll. Nature, 535, 117-121 (2016) Courtesy: A.C. Fabian

nature International Workky Journal of Science Horne | News & Commont | Research | Careers & Jobs | Current Issue | Andrike | Audio & Vide

NEWS & COMMENT

Dead X-ray satellite reveals galaxy cluster surprise

A fortuitous observation by Japan's Hitorii probe shows the calm centre of the Perseau cluster.

From the last gasp of a failed satelite comes a brief glimpes of galaxies far far away: Before it broke in March, one month after facing <u>a gantia</u>

See Didier Barret's talk

Missing baryons: the WHIM

- Cosmological hydro simulations show ~50% of baryons at T~10⁵-10⁷ K in the IGM.
 - Unvirialised and filamentary distribution
- How can they be detected?
 - In absorption:
 - Against a bright background sources (AGN or GRB afterglow)
 - In emission:
 - Tenuous and extended
 - Key to understand CGM and feedback

Characterising the WHIM baryons

BL Lac or GRB afterglow

WHIM filaments against a 10% brightest GRB afterglow z>0.8

Barret et al. 2016, SPIE Courtesy: F. Nicastro

Cen & Ostriker 2006

See Didier Barret's talk

The Energetic Universe - Black Holes

MS0735.6+7421 McNamara et al. 2005

Athena/WFI 1Ms simulation MPE & WFI team

BH accretion physics

- Measure BH spins
 - Constraints on SN origin
 - Relation to jets
- Accretion geometry
 - Disc truncation from lag spectra
 - Winds as diagnostics of the accretion flow

<u>#AthenaNuggets by Diaz-Trigo</u>

See talks by Giovanni Miniutti and Didier Barret

Supermassive Black Hole physics

Measure SMBH spins through Fe line spectroscopy

 Accretion geometry and jet/disk relation through reverberation mapping

See Giovanni Miniutti's talk

AGN winds and outflows

Mechanical feedback effective if L_{mech} > 1% L_{bol}

Mechanical energy released in ultra-fast outflows $\sim v^3$

#AthenaNuggets by Cappi

Cappi, Done et al. 2013, arxiv:1306.2330

Gas, metals and mechanical energy ejected in the circum-galactic medium by AGN and Starbursts

A. Ptak and the Athena simulation team (in progress)

See talks by Giovanni Miniutti and Didier Barret

anada, 23 October 2017

THORE WILL DE FIOTER WE LOTTOWIN

Obscured AGN census @ z~1-3

- What is the relation between obscured growth of SMBH through cosmic history and how does it relate to galaxy formation?
 - Most SMBH growth expected in heavily obscured (including Compton-Thick) environment.
 - Best X-ray signal of Compton-Thick AGN is the Fe emission line, EW ~0.5-1 keV.
 - Athena/WFI observations can uncover Compton-Thick average AGN at z~3
 - MIR observations can reliably uncover heavily obscured AGN, but only when the AGN is very powerful.

#AthenaNuggets by Carrera

Georgakakis, Carrera et al. 2013 arXiv1306.2328

The history of SMBH growth

AGN L_x versus z plane

 The cosmological history of black hole accretion is uncertain at z>3, unknown at z>6

- Only extreme AGN expected in opt/ IR surveys
- Athena needed to signpost average AGN

SXA17, IAA, Granada, 23 October 2017 #ÅthenaNuggets by A.Comastri, G.Lanzuisi & J.Aird

The history of SMBH growth

AGN L_x versus z plane

 The cosmological history of black hole accretion is uncertain at z>3, unknown at z>6

2013 arXiv1306.2325

al.

et

Comastri

Aird,

- Only extreme AGN expected in opt/ IR surveys
- Athena needed to signpost average AGN

SXA17, IAA, Granada, 23 October 2017 #ÅthenaNuggets by A.Comastri, G.Lanzuisi & J.Aird

The history of SMBH growth

AGN L_x versus z plane

 The cosmological history of black hole accretion is uncertain at z>3, unknown at z>6

- Only extreme AGN expected in opt/ IR surveys
- Athena needed to signpost average AGN

SXA17, IAA, Granada, 23 October 2017

2013 arXiv1306.2325

al.

et

Comastri

Aird,

#ÅthenaNuggets by A.Comastri, G.Lanzuisi & J.Aird

SMBH growth: accretion vs. mergers

- SMBH spin distribution is highly sensitive to SMBH growth history:
 - Accretion spins up SMBH
 - Mergers & chaotic accretion spin down SMBH
- A SMBH spin survey with Athena will reveal dominant SMBH growth
 - Partly doable with XMM-Newton, but for removal narrow features
- Biases: Highly spinning SMBH are radiatively more efficient and therefore are overrepresented in flux-limited samples (Vasudevan et al. 2016)
 - Athena can obtain spins for fainter sources and correct for this effect
 #AthenaNuggets by Brenneman & Miniutti

Observatory Science - all corners of astrophysics

- Planets and solar system bodies
- Exoplanets: magnetic interplay
- Star formation, brown dwarfs
- Massive stars: mass loss
- Supernovae: explosion mechanisms
- Supernova remnants: shock physics
- Stellar endpoints (NS)
- Interstellar medium

••

#AthenaNuggets by Branduardi-Raymont

#AthenaNuggets by Motch

See talks by Giovanni Miniutti and Didier Barret

finstitule de Pisica de Lantabria

Branduardi-R, Sciortino et al. 2013: arXiv 1306.2332 Sciortino, Rauw et al. 2013: arXiv 1306.2333

Decourchelle, Costantini et al. 2013: arXiv 1306.2335 Motch, Wilms et al. 2013: arXiv 1306.2334

Luminous extragalactic transients

- Athena will offer a quick Target of Opportunity facility, whereby a triggered observation could start in 4 hours ~50% of the cases
- High-z GRB afterglows will reveal the ISM composition at z>7-10
- Tidal Disruption Events (TDEs) result from the destruction of a star by a SMBH. Athena will
 - Unveil SMBH

See Didier Barret's talk

- Reveal the composition of the outflowing material
- Test for the presence of binary SMBH

• GW...

#AthenaNuggets by O'Brien

#AthenaNuggets by Jonker

Jonker, O'Brien et al. 2013: arXiv 1306.2336 Rosswog, Ramirez-Ruiz & Rix (2009) Courtesy: P.T. O'Brien and P. Jonker

Athena Science Requirements

Parameter	value	enables (driving science goals)
Effective area at 1 keV	≥1.4m ²	Early groups, cluster entropy and metal evolution, WHIM, high redshift AGN, census AGN, first generation of stars
Effective area at 6 keV	0.25 m ²	Cluster energetics (gas bulk motions and turbulence), AGN winds & outflows, SMBH & GBH spins
PSF HEW (< 8 keV)	5" on axis, 10" off axis	High z AGN, census of AGN, early groups, AGN feedback on cluster scales
X-IFU spectral resolution	2.5 eV	WHIM, cluster hot gas energetics and AGN feedback on cluster scales, energetics of AGN outflows at $z\sim$ 1-4
X-IFU FoV	5' diameter	Metal production & dispersal, cluster energetics, WHIM
X-IFU background	< 5 10 ⁻³ counts/s/cm ² /keV (75%)	Cluster energetics & AGN feedback on cluster scales, metal production & dispersal
WFI spectral resolution	150 eV	GBH spin, reverberation mapping
WFI FoV	40' x 40'	High-z AGN, census AGN, early groups, cluster entropy evolution, jet-induced cluster ripples
WFI count rate	80% at 1 Crab	GBH spin, reverberation mapping, accretion physics
WFI background	< 5 10 ⁻³ counts/s/cm ² /keV (75%)	Cluster entropy, cluster feedback, census AGN at $z\sim$ 1-4
Recons. astrometric error	1" (3 σ)	High z AGNs
GRB trigger efficiency	50%	WHIM, GW
ToO reaction time	≤4 hours	WHIM, first generation of stars, GW

Athena in the framework of the late 2020s

Athena Synergies with other facilities I

- ESO-Athena Synergy exercise finished
 - Led by ESO-Athena Synergy Team: P. Padovani (chair), E. Hatziminaglou, M. Díaz-Trigo, S. Viti, S. Ettori, M. Salvato, F. Combes, P. Jonker
 - Synergy White Paper arXiv:1705.06064
 - Synergy topics span a broad range of astrophysics <u>#AthenaNuggets by Diaz-Trigo</u>

See talks by Iván Agudo and Silvia Martínez

- SKA-Athena Synergy exercise finishing now
 - Led by SKA-Athena Synergy team: R. Cassano (chair), R. Fender, C. Ferrari, A. Merloni.
 - Synergy White Paper due by ~end 2017
 - AGN, clusters & transients

Athena Synergies with other facilities II

- Gamma-ray and multi-messenger facilities-Athena synergies
 - CTA, LIGO/VIRGO, other future (e.g. SVOM...), neutrinos?, cosmic rays?
 - Led by Luigi Piro (ASST)
 - Complex endeavour
 - To start soon
- Wide-Field Opt/IR Surveyors-Athena synergies
 - Euclid, WFIRST, LSST...
 - Led by Paul Nandra (ASST)
 - Complex endeavour
 - To start early next year

Many others...

See talks by Romano Corradi, Antonio de Ugarte and Juan A. Fdez

Athena Community Organisation

per 2017

The Athena Community Office

- Athena is currently supported by more than 800 researchers. Their scientific and technical expertise are key for the success of the mission.
- The ASST appointed the Athena Community Office to obtain assistance in:
 - Organisational aspects and optimisation of community efforts
 - Maintain the Athena Community informed
 - Develop communication and outreach activities around Athena
- Led by IFCA (CSIC-UC) in Spain, with contributions from IRAP, MPE and UniGe

See Silvia Martínez's talk

SXA17, IAA, Granada, 23 October 2017

TISTI UTC JE FISICA DE LANTAUTA

Outlook

- Athena will be a transformational X-ray observatory
 - Designed to address the Hot and Energetic Universe science theme
 - Will impact virtually every corner of astronomy
 - ≥1 order of magnitude improvement over several performance parameters with respect to any existing or planned X-ray missions
- It will be an essential part of the observational landscape in the late 2020s, together with ALMA, E-ELT, SKA, CTA, etc.
- Vibrant community ≥800 astronomers supporting it
- Technologically challenging, but based upon a robust scientific, technical and commercial heritage
- Good progress with Phase A.
 - Key milestone in 2020: Mission adoption by ESA for a launch in 2028/29.
 - Follow Athena on
 - Web: www.the-athena-x-ray-observatory.eu
 - Twitter: @athena2028

- Facebook: The Athena X-ray Observatory
- Athena Community Office email: <u>aco@ifca.unican.es</u>

Outlook

- Athena will be a transformational X-
 - Designed to address the Hot and
 - Will impact virtually every
 - ≥1 order of magnitude parameters with resn
- It will be an late 2020s, ¹
- Vibra

entific,

ce

by ESA for a launch in

eren

ww.the-athena-x-ray-observatory.eu

witter: @athena2028

- Facebook: The Athena X-ray Observatory
- Athena Community Office email: <u>aco@ifca.unican.es</u>