

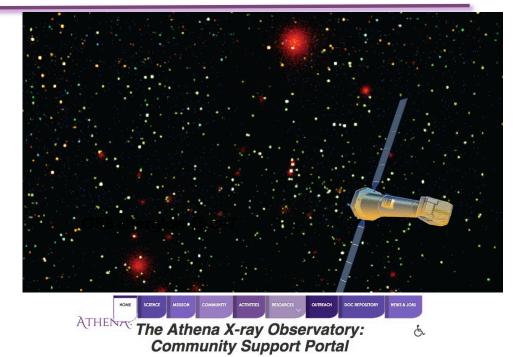
Athena,
the ESA observatory
to study
AGN

in the Hot and Energetic Universe

Francisco J. Carrera Xavier Barcons

Instituto de Física de Cantabria IFCA (CSIC-UC) Santander, Spain

Contents


- Athena in a nutshell
- Mission concept & payload
- Athena science requirements and performance
- The Athena science theme: Hot and Energetic Universe
- Project development status
- Synergies
- Community: ACO
- Spanish participation
- Outlook

Thanks to the X. Barcons
and the Athena Science
Study Team: D. Lumb, K.
Nandra. D. Barret, J.W.
den Herder, A.
Decourchelle, A.C. Fabian,
H. Matsumoto, L. Piro, R.
Smith, R. Willingale

Advanced Telescope for High-Energy Astrophysics

- Second Large (L2) mission of ESA Cosmic Vision 2015-2035
- Science theme: The Hot and Energetic Universe
 - How does ordinary matter assemble in the largescale structures?
 - How do black holes grow and shape galaxies?
- In addition:
 - Fast ToO capability to study transient sources
 - Observatory science across all corners of Astrophysics

More info in:
Latest activities & news
http://www.tre-athena-x-ray-observatory.eu

c 2016

Athena mission concept

- Single telescope, using Si pore optics. 12m focal length
 - WFI sensitive imaging & timing
 - X-IFU spatially resolved high-resolution spectroscopy
- Movable mirror assembly to switch between the two instruments
- Launch 2028, Ariane 64
- L2 halo orbit (TBC)
- Lifetime > 5 yr

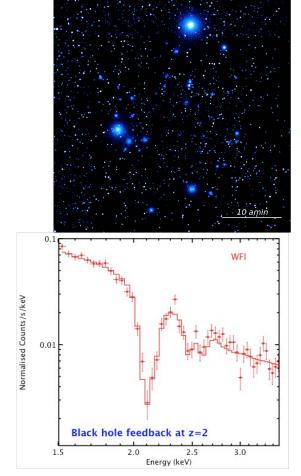


Athena concept, ESA CDF

The Athena X-ray optics

- Light-weight Si-pore optics:
 - 5" HEW on-axis
 - Graceful degradation offaxis, <10" @ 15'
 - 2 m² effective area @ 1 keV, with 3.9 m aperture diameter
 - Limited vignetting at 1 keV
- Athena optics development:
 - Grazing incidence optics, Wolter-I type (paraboloid-hyperboloid), largely with conical approximation
 - Vigorous development programme on-going.

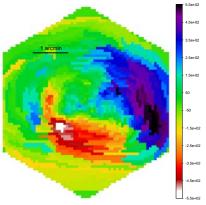
Willingale, Pareschi et al. 2013, arXiV: 1308.6785

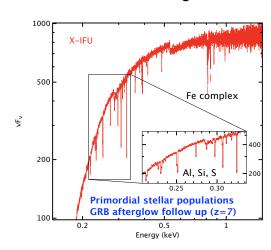


Wide Field Imager (WFI)

- Based on Si detectors, using Active Pixel Sensors based on DEPFETs.
- Key performances;:
 - 120-150 eV spectral resolution,
 - 2.3" pixel size (PSF oversample)
 - Field of view: 40'x40'
 - Separate chip for fast readout of brightest sources
 - Readout speed up to ~30 MHz
- Consortium led by MPE, with other European partners and NASA
- Optimized for sensitive and wide imaging and intermediate resolution spectroscopy, up to very bright sources

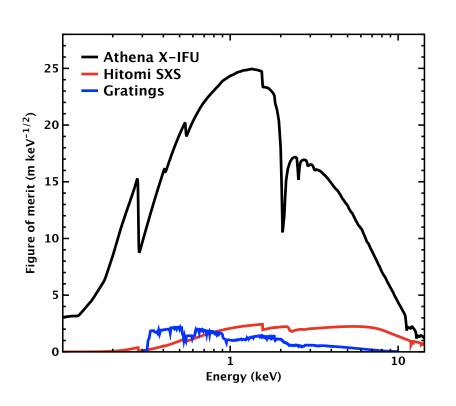
Rau et al. 2013, arXiV: 1308.6785

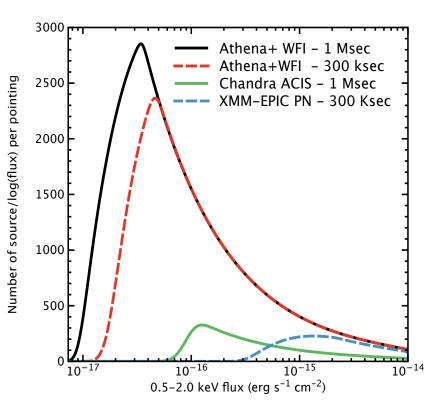



X-ray Integral Field Unit (X-IFU)

- Cryogenic imaging spectrometer, based on Transition Edge Sensors, operated at 50 mK featuring an active cryogenic background rejection subsystem
- Consortium led by CNES/ IRAP-F, with SRON-NL, INAF-IT and other European partners (ES, CH, BE, FI, PL, DE), NASA and JAXA.
- Key performance parameters:
 - 2.5 eV energy resolution
 <7 keV</pre>
 - FoV 5' diameter
 - Pixel size <5"

E. Pointecouteau, P. Peille, E. Pointecouteau, E. Rasia, V.Biffi, S. Borgani, K. Dolag, J. Wilms

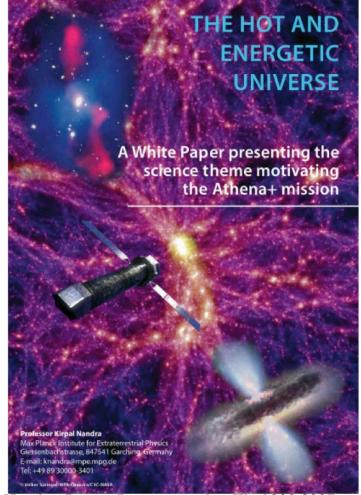



Barret et al. 2013, arXiV: 1308.6784 http://x-ifu.irap.omp.eu/

Athena Science Requirements

Parameter	value	enables (driving science goals)
Effective area at 1 keV	2 m ²	Early groups, cluster entropy and metal evolution, WHIM, high redshift AGN, census AGN, first generation of stars
Effective area at 6 keV	0.25 m ²	Cluster energetics (gas bulk motions and turbulence), AGN winds & outflows, SMBH & GBH spins
PSF HEW (< 8 keV)	5" on axis, 10" off axis	High z AGN, census of AGN, early groups, AGN feedback on cluster scales
X-IFU spectral resolution	2.5 eV	WHIM, cluster hot gas energetics and AGN feedback on cluster scales, energetics of AGN outflows at $z\sim1-4$
X-IFU FoV	5' diameter	Metal production & dispersal, cluster energetics, WHIM
X-IFU background	< 5 10 ⁻³ counts/s/cm ² / keV (75%)	Cluster energetics & AGN feedback on cluster scales, metal production & dispersal
WFI spectral resolution	150 eV	GBH spin, reverberation mapping
WFI FoV	40' x 40'	High-z AGN, census AGN, early groups, cluster entropy evolution, jet-induced cluster ripples
WFI count rate	80% at 1 Crab	GBH spin, reverberation mapping, accretion physics
WFI background	< 5 10 ⁻³ counts/s/cm ² / keV (75%)	Cluster entropy, cluster feedback, census AGN at $z\sim1-4$
Recons. astrometric error	1" (3s)	High z AGNs
GRB trigger efficiency	40%	WHIM
ToO reaction time	< 4 hours	WHIM, first generation of stars

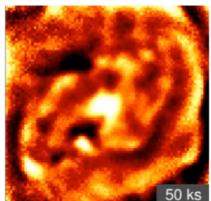
Athena: a transformational observatory

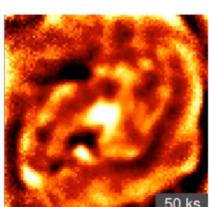


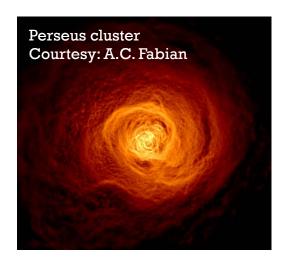
Credit: Athena team

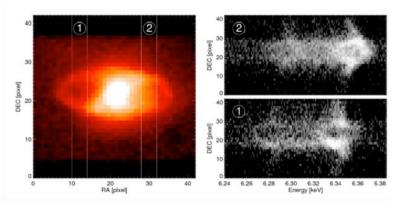
The Hot and Energetic Universe

- The Hot Universe: How does the ordinary matter assemble into the large-scale structures that we see today?
 - >50% of the baryons today are in a hot (>10⁶ K) phase
 - there are as many hot (> 10⁷ K) baryons in clusters as in stars over the entire Universe
- The Energetic Universe: How do black holes grow and influence the Universe?
 - Building a SMBH releases 30 × the binding energy of a galaxy
 - 15% of the energy output in the Universe is in X-rays



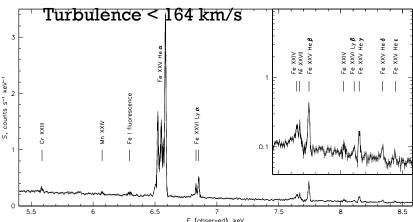

Nandra, Barret, Barcons et al. arXiv:1306.2307




AGN feedback on cluster scales

- Dissipation AGN energy into ICM
 - Energy stored in hot gas around bubbles via bulk motions and turbulence.
 - History of radio cluster feedback via ripples.
 - AGN jet fuelling vs. cooling through temperature distribution.
 - Shock speeds of expanding radio lobes

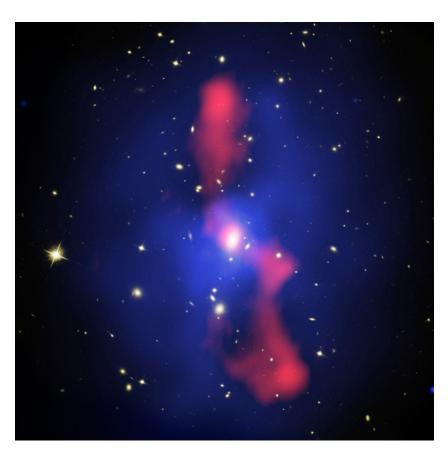
Croston, Sanders et al. 2013 arXiv1306.2323 Simulations by S. Heinz



Hitomi (Feb-Mar 2016)

- The JAXA Hitomi satellite was launched in February 2016, with an X-ray calorimeter on board (resolution~5 eV)
 - Unfortunately, the S/C was lost in March 2016
 - But it had taken 275 ks of data of the Perseus cluster, above 2 keV.
 - DATA ARE AMAZING!

Perseus cluster core


Hitomi coll. Nature, 535, 117-121 (2016) Courtesy: A.C. Fabian

NEWS & COMMENT

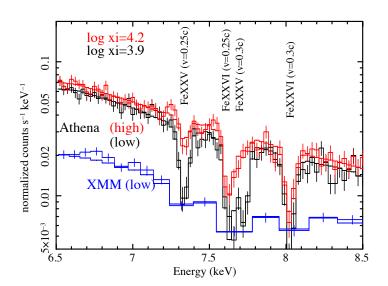
The Energetic Universe - Black Holes

Growing SMBH

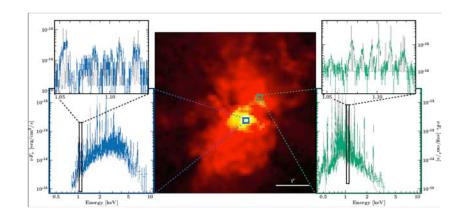
Athena/WFI 1Ms simulation

MPE & WFI team

MS0735.6+7421 McNamara et al. 2005



AGN Spain 2016, Tenerife, 27 October 2016

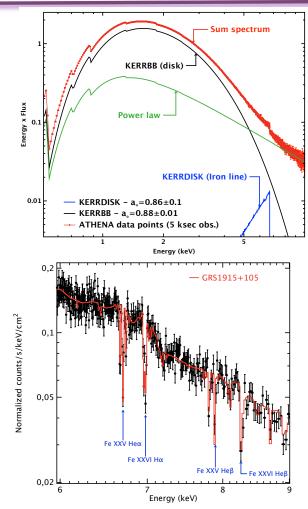

AGN winds and outflows

Mechanical feedback effective if $L_{mech} > 1\% L_{bol}$

Mechanical energy released in ultra-fast outflows ~v³

Gas, metals and mechanical energy ejected in the circum-galactic medium by AGN and Starbursts

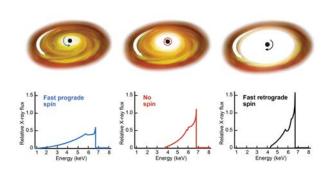
Cappi, Done et al. 2013, arxiv: 1306.2330


A. Ptak and the Athena simulation team (in progress)

#ĂthenaNuggets by M. Cappi & G. Ponti

BH accretion physics

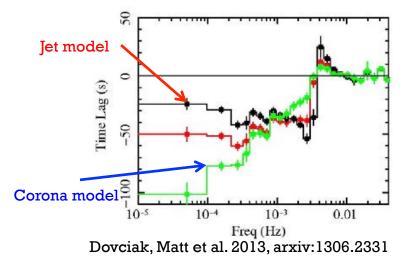
- Measure BH spins
 - Constraints on SN origin
 - Relation to jets
- Accretion geometry
 - Disc truncation from lag spectra
 - Winds as diagnostics of the accretion flow



Courtesy J.M. Miller Barret et al. 2016 SPIE2016

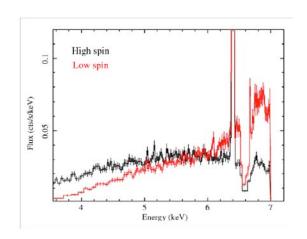
AGN Spain 2016, Tenerife, 27 October 2016

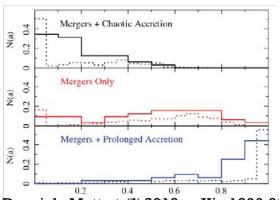
Supermassive Black Hole physics


Measure SMBH spins through Fe line spectroscopy

Corona

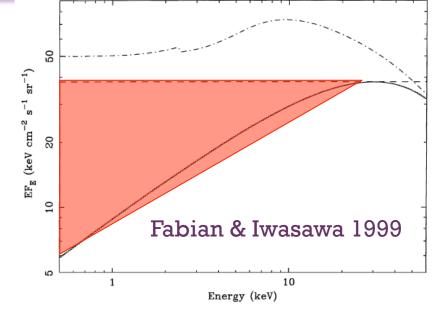
Base of jet


Accretion geometry and jet/disk relation through reverberation mapping



SMBH growth: accretion vs mergers

- SMBH spin distribution is highly sensitive to SMBH growth history:
 - Accretion spins up SMBH
 - Mergers & chaotic accretion spin down SMBH
- A SMBH spin survey with Athena will reveal dominant SMBH growth
 - Partly doable with XMM-Newton, but for removal narrow features
- Biases: Highly spinning SMBH are radiatively more efficient and therefore are overrepresented in flux-limited samples (Vasudevan et al. 2016)
 - Athena can obtain spins for fainter sources and correct for this effect



Dovciak, Matt et al. 2013: arXiv 1306.2331 simulations by G. Miniutti

Obscured AGN census @ z~1-3: why care?

- Most energy emitted from accretion in the Universe is obscured
- Relationship between buildup of SMBH and growth of host galaxies:
 - through obscured phase z~1-4

■ Unclear (but significant) contribution of Compton Thick (CT) objects

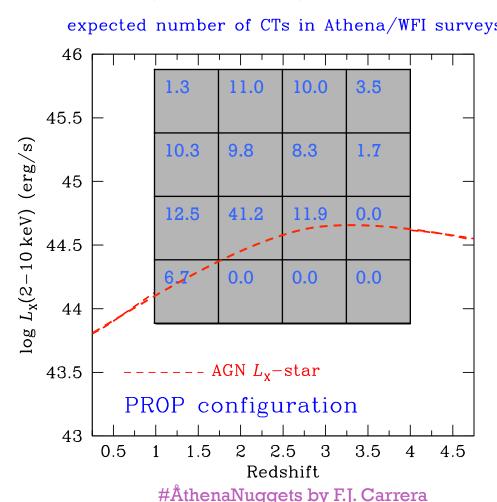
Obscured AGN census @ z~1-3: Methodology

- Divide parameter space in bins (hypercubes):
 - \blacksquare z, L_X , N_H ...
- Explore different exposure times:
 - Survey geometry(4×1Ms+3×700ks+9x450ks+230×80ks)

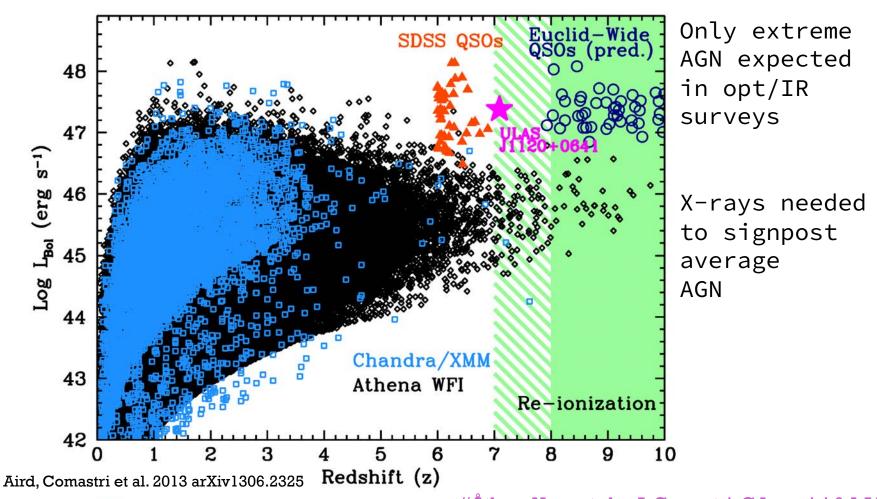
- Dedicated, but shared with hi-z AGN...
- Analysis of (many) spcpic sims to quantify:
 - Texp needed to get a given quality in a given parameter bin
 - Area/Texp needed to get a given number of sources
 - (Impact of de-scoping options)
 - **.** . . .

Obscured AGN census @

- Complete census of heavily obscured (dominant?
- Recovering within 30% L_X and N_H (CT:log(N_H /cm⁻²)=24.5,25.5)
 - using only WFI spectrum
 and z
 - Synergies with multi-λ
- Brightman&Nandra'11 torus
- Gilli+07 CXB model
- Can do it for L* for z≤3
- Need ≥400ks exposure


 $logN_{H}$ =24.5 L_{X} (2-10keV)=5×10⁴⁴ cgs z=2

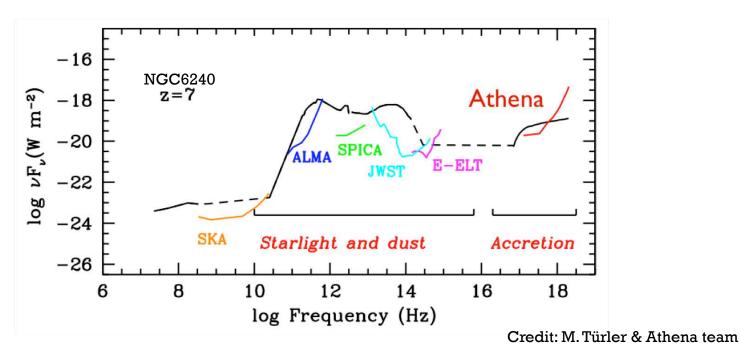
Obscured AGN census @ z~1-3


- Complete census of heavily obscured (dominant?) AGN
- Recovering within 30% L_X and N_H (CT:log(N_H /cm⁻²)=24.5,25.5)
 - using only WFI spectrum
 and z
 - Synergies with multi-λ
- Brightman&Nandra'11 torus
- Gilli+07 CXB model
- Can do it for L* for z≤3
- Need ≥400ks exposure

AGN Spain 2016, Tenerife, 27 October 2016

The history of SMBH growth

X-ray spectroscopic z



- Using method of Castelló+11, essentially:
 - FT analysis of spectrum/simple model
 - Look for peaks of emission
 - Spectral fit with FT peak energy as input
 - Working to implement wavelet method
- Preliminary tests with simulated CT AGN spectra
 - Estimated fraction in z, L_x bin $\Delta z/z \le 0.1$
 - Different values of Texp:
 - T_{exp} =60ks: \gtrsim 50% for $L_{\chi} \ge 5 \times 10^{45}$ erg/s for $z \le 4$
 - T_{exp} =400ks: ≥50% for L_x ≥10⁴⁵ erg/s for z≤2
 - T_{exp} =1Ms: $\geq 70\%$ for $L_{\chi}>L*$ for $z\leq 2$

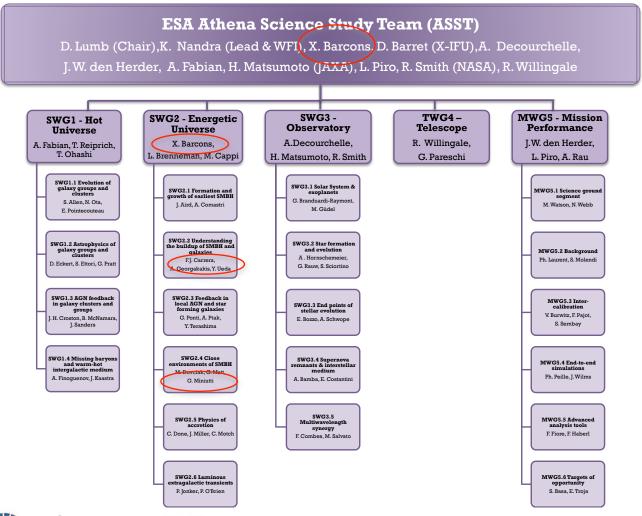
Athena in the framework of the late 2020s

Athena Synergies with other facilities

- ESO-Athena Synergy exercise underway since March 2016
 - Led by ESO-Athena Synergy Team: P. Padovani (chair), E. Hatziminaglou, M. Díaz-Trigo, S. Viti, S. Ettori, M. Salvato, F. Combes, P. Jonker
 - Leading to 2 Synergy White Papers ~March 2017: opt/NIR and sub/mm
 - Synergy topics span a broad range of astrophysics

- SKA-Athena Synergy exercise starting now
 - Led by SKA-Athena Synergy team: R. Cassano (chair), R. Fender, C. Ferrari, A. Merloni.
 - Synergy White Paper due by ~fall 2017
 - AGN, clusters & transients

AGN Spain 2016, Tenerife, 27 October 2016



Athena Community Organisation

http://www.the-athena-x-ray-observatory.eu

The Athena Community Office

- Athena is currently supported by more than 800 researchers. Their scientific and technical expertise are key for the success of the mission.
- The ASST appointed the Athena Community Office to obtain assistance in:
 - Organisational aspects and optimisation of community efforts
 - Maintain the Athena Community informed
 - Develop communication and outreach activities around Athena
- Led by IFCA (CSIC-UC) in Spain, with contributions from IRAP, MPE and UniGe

Spanish participation in Athena

- At mission level
 - X. Barcons serves in ESA's ASST
 - Total 48 researchers from Spanish institutions serve in the TP:
 - 1 WG co-chair (XB) and 2 TP co-chairs (FJC and G. Miniutti)
 - AGN: 20 in SWG2 (Energetic Universe), 6 in SWG3.5 (synergies) and 6 in MPG5 (mission performance)
 - Athena Community Office led by IFCA
- At instrument level, all participation focussed in X-IFU

Spanish participation in

- M. Mas Hesse represents Spain in the X-IFU consortium board
- The Detector Cooling System cryostat (dewar)
 - In development by INTA and CAB (Phase A)
 - Lead: A. Balado (national X-IFU PM). Other participants: J. Azcue, M.A. Alcacera,, A. Gómez, L.González, M. Mas-Hesse, M. Pajas, J. Martín-Pintado, J.A. Viceira y P. Zuluaga-Ramírez
- The Event Processor algorithms:
 - In development by IFCA
 - Lead: M.T. Ceballos. Other participants: B. Cobo
- Science support:
 - X-IFU Science Team: X. Barcons (chair), J.M. Torrejón
- X-IFU Instrument Science Centre (operations):
 - IFCA and U. Alicante have offered to participate

Athena Project development: Current status

- Phase A on-going, Jun 2015 to end 2017 (PRR)
 - System-level tradeoffs, spacecraft conceptual design
 - Development of the 2 instrument concepts by the consortia
 - Technology development activities (optics, cryo-coolers etc)
 - Contribution from external partners (NASA & JAXA)
- Mission Consolidation Review (MCR) Apr/May 2016 → ∆PhaseA1
 - Mission concepts are sound
 - Instrument switching mechanism is through a Movable Mirror Assembly
 - Instrument resources challenging: all being addressed or already fixed.
 - Mass lift capacity of Ariane 64 fixed to 7 Tons
 - Consolidation of the Cost at Completion underway
 - Mission concept to be carried over is that of the proposed mission, with 2 m² effective area at 1 keV

Outlook

- Athena will be a transformational X-ray observatory
 - Designed to address the Hot and Energetic Universe science theme
 - Will impact virtually every corner of astronomy
 - Well suited to address AGN science in particular
- It will be an essential part of the observational landscape in the late 2020s, together with ALMA, E-ELT, SKA, CTA, etc.
- Vibrant community supporting it
 - Soon another call to join TP: don't miss it!
- Good progress with Phase A.
 - Key milestone in 2020: Mission adoption by ESA for a launch in 2028.

Follow Athena on

- Web: www.the-athena-x-ray-observatory.eu
- Twitter: @athena2028
- Facebook: The Athena X-ray Observatory
- Athena Community Office email: aco@ifca.unican.es

